Convergence of finite difference schemes for the Benjamin–Ono equation
نویسندگان
چکیده
منابع مشابه
Nonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملFinite-Difference Schemes for the Diffusion Equation
Abst rac t . The Crank-Nicolson scheme is widely used to solve numerically the diffusion equation, because of its good stability properties. It is, however, ill-behaved when large time-steps are used: the short wave-lengths may happen to be less damped than the long ones. A detailed analysis of this flaw is performed and an Mternative scheme is proposed, which removes this difficulty while pres...
متن کاملFinite Difference Schemes and the Schrodinger Equation
In this paper, we primarily explore numerical solutions to the Quantum 1D Infinite Square Well problem, and the 1D Quantum Scattering problem. We use different finite difference schemes to approximate the second derivative in the 1D Schrodinger’s Equation and linearize the problem. By doing so, we convert the Infinite Well problem to a simple Eigenvalue problem and the Scattering problem to a s...
متن کاملConvergence rates of finite difference schemes for the wave equation with rough coeffiicients
The propagation of acoustic waves in a rough heterogeneous medium is modeled using the linear wave equation with a variable but merely Hölder continuous coefficient. We design robust finite difference discretizations that are shown to converge to the weak solution. We rigorously determine the rate of convergence of these discretizations by an L variant of the Kruzkhov doubling of variables tech...
متن کاملConservative finite difference schemes for the Degasperis-Procesi equation
We consider the numerical integration of the Degasperis–Procesi equation, which was recently introduced as a completely integrable shallow water equation. For the equation, we propose nonlinear and linear finite difference schemes that preserve two invariants associated with the bi-Hamiltonian form of the equation at a same time. We also prove the unique solvability of the schemes, and show som...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerische Mathematik
سال: 2015
ISSN: 0029-599X,0945-3245
DOI: 10.1007/s00211-015-0778-6